10217

Normal Curvature at a Regular Point of a Surface

Choose from four types of a regular point on a surface and see how the normal curvature changes as the normal plane rotates around the normal line at this point.

DETAILS

Since the normal curvature of a surface at a regular point is a continuous function, it has both a maximum and a minimum on (according to the extreme value theorem). These extrema are the principal curvatures and of at and the Euler curvature formula is valid. If , defines the asymptotic direction at .
The Gaussian curvature of at is defined as .
A point on the surface is called:
- An elliptic point if (or the principal curvatures and have the same sign). There are no asymptotic directions.
- A hyperbolic point if (or the principal curvatures and have opposite signs). There are exactly two asymptotic directions, and the principal directions bisect the angle between them.
- A parabolic point if and exactly one of the principal curvatures vanishes.
- A planar point if and both and vanish—that is, every direction is asymptotic.
Reference:
A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed., Boca Raton: CRC Press LLC, 1998.

PERMANENT CITATION

Contributed by: Desana Štambuk (University of Zagreb)
Suggested by: Sonja Gorjanc
 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.
 © 2015 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS
 Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX Download or upgrade to Mathematica Player 7EX I already have Mathematica Player or Mathematica 7+