10176

# Normalized B-Bases for Trigonometric Polynomial Curves

B-curves are trigonometric polynomial curves; they are plots of linear combinations of a B-basis, which generalizes the polynomial Bernstein basis. B-curves can easily be controlled and modified by a control polygon, very much like the more common Bézier curves.

### DETAILS

A classical function space is the order- trigonometric polynomial space . The following is a normalized B-basis for such a space, for [1]:
,
with
.
This basis allows the definition of a B-curve by
,
where is the control polygon.
In this Demonstration, we plot such B-curves, with an adjustable (odd) number of control points. You can also vary the value of and see the corresponding normalized B-basis as well. The order of this basis corresponds to the number of control points, which has to be odd for the B-curve and its basis to exist.
Reference
[1] J. Sanchez–Reyes, "Harmonic Rational Bézier Curves, -Bézier Curves and Trigonometric Polynomials," Computer Aided Geometric Design, 15, 1998 pp. 909–923. doi.10.1016/S0167-8396(98)00031-4.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.