10182

# Numerical Iso-Optic Curve of the Ellipse

This Demonstration shows how the iso-optic curve of the ellipse can be approximated by the iso-optic curve of the polygon circumscribing it.

### DETAILS

The iso-optic of a curve is formed from the points from which the given curve subtends the angle . This Demonstration is based on two previous ones (see the first two Related Links), but here we approximate the ellipse with polygons as a way to find its iso-optic curve.
You can chose some discrete values of from the range between and . Using the other controls, you can set the semi-minor and semi-major axes of the ellipse between and and the angle between and . The ellipse is green and the inscribed polygon is blue (except in the case ). The red domains show the points from which the polygon (and also the ellipse) subtends an angle greater than or equal to and its boundary are the points from which the ellipse subtends the angle . We have already proved that this curve is the correct solution of this problem.
The snapshots show some general situations, except the second one, which shows that if we set large enough, the iso-optic curve of the polygon (which is the boundary of the red domain) is almost the iso-optic curve of the ellipse.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.