Optimum Cycle Period for Batch Reactor with Downtime

Consider a first-order reaction taking place in a batch reactor. This Demonstration finds the optimum cycle period for this reaction with downtime (expressed in hours) equal to . This point is shown by a blue dot. The red curve represents the plot of the dimensionless daily yield, , versus the dimensionless concentration, , where is the initial concentration in the batch reactor, is the number of daily batches equal to , is the reaction duration, and is the reactor's volume. You can see the effect of varying the dimensionless downtime, , where is the reaction's rate constant. It is clear that low dimensionless reaction times are more favorable when the dimensionless downtime is low. On the other hand, if the dimensionless downtime is high, then the optimum dimensionless reaction time will be high.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


You can easily derive the following expression for the daily yield [1]:
[1] R. H. Perry and D. W. Green, Perry's Chemical Engineers' Handbook, 7th ed., International Edition, New York: McGraw–Hill, 1997.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+