Osmotic Pressure

Osmosis involves the selective passage of certain components of a solution through a semipermeable membrane, with exclusion of other components. It is, of course, of central significance in biological processes. Consider in this Demonstration a membrane permeable only to water, but impermeable to the solute in a water solution. The membrane is represented by a blue disk at the bottom of the U-tube, separating the pure solvent on the left from the solution on the right. Solvent will spontaneously flow through the membrane into the solution, in a (vain) attempt to equalize the concentrations on the two sides. This gives rise to an osmotic pressure, designated . For dilute solutions, the osmotic pressure, in atm, is well approximated by the van 't Hoff equation , where is the solute concentration in mol/L, L atm , the ideal-gas constant, and , the absolute temperature in K. The van 't Hoff factor represents the number of ions per molecule for a dissociated solute. For example, for NaCl, , giving the total number of and ions. All other solutes we consider are undissociated with . The van 't Hoff equation can be written in a form remarkably analogous to the ideal gas law: , but the underlying mechanisms for the two phenomena are completely different. Osmotic measurements provide a very sensitive method for determining molecular weights , particularly for polymers. For a solute concentration of g/L, the molar concentration is equal to .
An osmotic pressure of 1 atm would cause a rise of 1033.26 cm for the solution in a U-tube. To keep magnitudes to a more manageable laboratory scale, solute concentrations are limited to the range of 1-50 mg/L; 1 cm corresponds to atm or 0.73554 torr. You can measure solutions of sugar, table salt, or a random unknown. You have sufficient data then to calculate the molecular weight of the solute or, by marking the checkbox, let the program do the calculation.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Snapshots 1–3: determining molecular weights for three different solutes
See the Wikipedia entry for Osmotic pressure.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+