Oxygen Transport by Hemoglobin and Myoglobin

Hemoglobin, the essential component of red blood cells (erythrocytes), transports oxygen () through the bloodstream from the lungs to all the tissues of the body. Hemoglobin also carries carbon dioxide () back to the lungs to complete the process of respiration. Vertebrate hemoglobin is a nearly spherical protein molecule consisting of an array of four globin polypeptide chains, each containing a heme group, which is the oxygen-binding site. Its molecular weight is approximately 64,500 daltons. The oxygen uptake of hemoglobin exhibits cooperativity, such that each successively increases the affinity of the molecule for adding another , up to four. The saturation is a measure of the fractional occupancy of the oxygen-binding sites. It increases as a sigmoid-shaped function of the partial pressure of in its immediate environment. In the alveoli of the lungs, is approximately 100 torr.
Myoglobin, which is located in muscle cells, serves as a reserve supply of oxygen for muscle functioning. This molecule consists of a single globin unit (MW ≈ 16,700 Da) with just one oxygen binding site. In contrast to hemoglobin, myoglobin will absorb or release an molecule at a much lower partial pressure. The skeletal muscles of aquatic mammals, such as whales and dolphins, are particularly rich in myoglobin, which allows them to be submerged for long periods of time.
A phenomenon known as the Bohr effect was discovered in 1904 by Danish physiologist Christian Bohr (father of physicist Niels Bohr). This constitutes a reduction in the oxygen affinity of hemoglobin as blood acidity increases, with pH decreasing from its normal value of 7.4, usually as a consequence of an increase of concentration in the blood. Myoglobin does not exhibit the Bohr effect.
This Demonstration plots the dependence of oxygen saturation on and pH. The average number of bound molecules is shown in the top illustrations. These are highly schematic, with the molecules being greatly magnified.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The binding of oxygen to myoglobin is described by the equilibrium . The saturation can be defined by , where is the partial pressure for 50% saturation, about 1 torr for myoglobin. For hemoglobin, the equilibrium takes the form , to . Here , where to account for the cooperativity of binding and at pH 7.4 but slightly higher as the pH decreases.
The central part of the heme group has this structure: . The complexes with the iron atom.
Reference: L. Stryer, Chap. 7, Molecular Design of Life, New York: W. H. Freeman, 1989.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+