11552

# Parameters for Plotting a Quartic

The general quartic can be brought into the reduced form
by means of the translation . If , then and .
The coordinates of the two points of inflection of are , where .
When , there are two real points of inflection and hence three real turning points. When , both points of inflection are complex and hence there is only one real turning point.
Since , , and are directly related to the geometry of the quartic, this Demonstration offers a more intuitive insight regarding how the shape of the curve is related to the coefficients of the reduced form .

### DETAILS

The four roots of the reduced quartic equation can be expressed in terms of just three parameters, say , , , where , , are the roots of the resolvent cubic equation , known as Euler's cubic. Note that are the six roots of the resolvent sextic Thus, the key to solving the quartic is to first solve the resolvent cubic
For a more detailed discussion see R. W. D. Nickalls, "The Quartic Equation: Invariants and Euler's Solution Revealed," The Mathematical Gazette, 94, 2009 pp. 66–75.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.