Parametric Equation of a Circle in 3D

A circle in 3D is parameterized by six numbers: two for the orientation of its unit normal vector, one for the radius, and three for the circle center .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


While a 2D circle is parameterized by only three numbers (two for the center and one for the radius), in 3D six are needed. One set of parametric equations for the circle in 2D is given by
for a circle of radius and center .
In 3D, a parametric equation is
for a circle of radius , center , and normal vector ( is the cross product). Here, is any unit vector perpendicular to . Since there are an infinite number of vectors perpendicular to , using a parametrized is helpful. If the orientation is specified by an azimuth angle and a zenith angle , then , and can have simple forms:
This notation follows a variable naming convention sometimes used in mathematics. Another convention labels the zenith angle and azimuth .
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+