Particle in an Infinite Circular Well

This Demonstration solves the quantum-mechanical problem of a particle confined to a disk, which can be called an infinite 2D circular well. The probability densities for several energy eigenstates are plotted. The azimuthal quantum number , equal to the number of angular nodes, determines the angular momentum . The radially excited state energies depend on the zeros of the Bessel function .

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The solutions are of the form and with the quantized energy levels
,
where is the Planck constant, is the mass and is the zero of the Besssel function .
References
[1] R. W. Robinett, "Visualizing the Solutions for the Circular Infinite Well in Quantum and Classical Mechanics," American Journal of Physics, 64(4), ‎1996 pp. 440–446.
[2] R. W. Robinett, Quantum Mechanics, Classical Results, Modern Systems and Visualized Examples, 2nd ed., Oxford: Oxford University Press, 2006.
[3] R. W. Robinett, "Quantum Mechanics of the Two-Dimensional Circular Billiard Plus Baffle System and Half-Integral Angular Momentum." arxiv.org/pdf/quant-ph/0307035.pdf.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.