Particle in an Infinite Vee Potential

This Demonstration considers solutions of the Schrödinger equation for a particle in a one-dimensional "infinite vee" potential: , setting for simplicity. The solutions of the differential equation that approach zero as are Airy functions , as can be found using DSolve in Mathematica. The allowed values of are found by requiring continuity of at . The even solutions require , which leads to , with , , , … being the first, second, third, … zeros of the Airy prime function: . The odd solutions have nodes , which leads to , with , , , … being the first, second, third, … zeros of the Airy function: . The ground state is given by .
For user-selected and , the eigenfunctions , with normalization constants , are plotted as blue curves. The axis for each function coincides with the corresponding eigenvalue , the first ten values of which are shown on the scale at the right. The vertical scales are adjusted for optimal appearance.
A checkbox lets you compare the vee-potential eigenstates with the corresponding ones of the harmonic oscillator, drawn in red. The ground states of the two systems are chosen to coincide: . The harmonic oscillator is more confining, so its eigenvalues are more widely spaced. For higher values of , the oscillator functions might move off scale.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.