10182

# Particular Solution of a Nonhomogeneous Linear Second-Order Differential Equation with Constant Coefficients

This Demonstration shows the method of undetermined coefficients for a nonhomogeneous differential equation of the form with , , , and constants. If , then the form of the particular solution is . If and , the particular solution is of the form . If and , the particular solution is of the form .
The second part shows the solution of a linear nonhomogeneous second-order differential equation of the form . Let be a root of the corresponding characteristic equation. If , the particular solution is of the form . If and , the form is . If has multiplicity 2, then is a real number and the form of particular solution is .

### DETAILS

The general solution of a nonhomogeneous linear differential equation is , where is the general solution of the corresponding homogeneous equation and is a particular solution of the first equation.
Reference
[1] V. P. Minorsky, Problems in Higher Mathematics, Moscow: Mir Publishers, 1975 pp. 262-263.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.