9716

Peculiar Behavior of the Newton Method

Consider the function , which has the three obvious roots 1, 2, and 3. These roots can be obtained using the Newton technique
.
This iterative numerical technique requires an initial guess, .
This Demonstration computes the solution obtained by the Newton method (indicated by a green dot) for user-set value of the initial guess (indicated by the blue line). It turns out that when the initial guess is not properly chosen, one can get an unexpected solution: the solution furthest away from the initial guess is obtained.
This can be clearly seen from the first two snapshots where one finds, for the following initial guesses and , the roots and , respectively. A plot of the solution obtained for any value of the initial guess is given and the peculiar behavior of the Newton method is indicated by the two blue circles. This phenomena is readily explained if one plots versus , which presents a very pronounced increase or decrease when is in the region either around or near .

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Reference
[1] K. J. Beers, Numerical Methods for Chemical Engineering, Cambridge: Cambridge University Press, 2007.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+