Permutation Grid Classes

A grid class of permutations is defined by a 0/1/-1 matrix, which specifies the shape of plots of the permutations in the class. Each cell in the matrix corresponds to a rectangle in a "gridding" of a permutation. If the cell in the matrix contains 1, any points in the rectangle must form an increasing sequence; if the cell contains -1, any points in the rectangle must form a decreasing sequence; if the cell is 0, the rectangle must be empty. An empty sequence is both increasing and decreasing. A permutation in a grid class may have multiple possible griddings.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Click in either the numeric or graphical representation of the matrix to change the cell values.
Permutation grid classes are defined in [1].
Reference
[1] S. Huczynska and V. Vatter, "Grid Classes and the Fibonacci Dichotomy for Restricted Permutations," Electronic Journal of Combinatorics, 13(R54), 2006 pp. 1–14.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.