9887

Placing Dominoes on a Checkerboard

A classic puzzle asks for the placement of as many disjoint dominoes (1×2 tiles) as possible onto a checkerboard from which some squares have been removed. The problem can be solved by setting up a bipartite graph where one part consists of the white unblocked squares, the other consists of the black unblocked squares, and edges correspond to adjacency of squares. Then a maximum matching (a collection of disjoint edges that is as large as possible) in this graph leads to a solution of the domino problem. In this Demonstration, the blocked squares are red, the graph is shown in blue, and the maximum domino array is shown in yellow.
To add or remove blocked squares, -click or -click a square.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Snapshot 1: an example in the 8×8 case where both white and black squares remain uncovered by dominoes
Snapshot 2: a similar example, again with a large discrepancy between the maximum possible, 20, and the maximum that can be placed, 14
Snapshot 3: the underlying bipartite graph
The algorithmic solution is based on the existence of a very fast algorithm—usually called the Hungarian algorithm—to find a maximum matching in a bipartite graph. The following two books are good references.
[1] R. A. Brualdi, Introductory Combinatorics, 4th ed., Saddle River, NJ: Prentice Hall, 2004.
[2] W. J. Cook, W. H. Cunningham, W. R Pulleyblank, and A. Schrijver, Combinatorial Optimization, New York: Wiley, 1998.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+