Polarized Atoms Visualized by Multipole Moments

An ensemble of spin-polarized atoms is characterized by its density matrix , which can be decomposed into atomic multipole moments that transform under rotations as irreducible tensors of rank . This Demonstration gives a graphical visualization of the longitudinal multipole moments (left) and of the corresponding populations of the magnetic sublevels (right).


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The polarization of an ensemble of atoms with angular momentum is described by its density matrix that has elements. The state of polarization can be represented by a probability surface
that represents the probability of finding the ensemble in the stretched state when the quantization axis is oriented along (, ).
The density matrix can be expanded into multipole moments
where the are irreducible tensor operators with rank and . The , called multipole moments or state multipoles, transform under rotations as the spherical harmonics The moments are called longitudinal moments, while the moments are called transverse moments or coherences. An ensemble of particles with spin can have multipole moments of rank .
The longitudinal moments can be expressed in terms of the populations of particles in the magnetic sublevel and conversely the sublevel populations depend on the state multipole moments according to
A given single multipole moment is represented by the probability surface
This Demonstration visualizes the probability surfaces of ensembles with spin that have a pure longitudinal multipole moment in addition to the (trivial) monopole moment of value . You can vary the value of between its extreme values, and the corresponding populations of the sublevel populations are shown as vertical bars.
An ensemble with nonvanishing multipole moments is said to be oriented, while an ensemble with non-vanishing multipole moments is said to be aligned.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+