Problem 11340 of The American Mathematical Monthly

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

Problem 11340 of The American Mathematical Monthly (January 2008) asks for the following:

[more]

Given a disk centered at the origin that rotates counterclockwise with a uniform angular velocity in the - plane, point masses fly off the disk's rim along its tangents. Once they have left the disk, they freely fall downward under the influence of gravity. All point masses that leave the disk rim from its right half have an upward initial velocity component and reach a maximum height before falling. (All point masses that leave the disk rim from the left half have their maximum height at their starting point.) Find an implicit description of the envelope curve of the points of maximum height for the point masses leaving the disk on the right half.

This Demonstration shows the trajectories of the point masses, the points of maximum height of the point masses that leave the rim on the right half, and the envelope.

[less]

Contributed by: Michael Trott with permission of Springer. (March 2011)
From: The Mathematica GuideBook for Symbolics, second edition by Michael Trott (© Springer, 2008).
Open content licensed under CC BY-NC-SA


Snapshots


Details

For more information, see F. O. Goodman, "Mud Thrown from a Wheel Again", American Journal of Physics, 63(1), 1995 pp. 82–83.



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send