9711

Pulsatile Flow in a Circular Tube

The velocity distribution, , is computed numerically using NDSolve for a pulsatile pressure-driven flow in a tube. This model considerably simplifies the actual flow through veins and arteries.
When the kinematic viscosity is large and momentum diffusion is fast (i.e. the Strouhal number, , is small, as shown in the first snapshot), the velocity at the center of the tube, (shown in red), can instantaneously adjust to changing pressure, (shown in blue). The velocity is then in phase with the pressure gradient.
On the other hand, when the kinematic viscosity is small and momentum diffusion is slow, then is large (see the second snapshot) and the velocity at the center of the tube, , lags the pressure gradient by 90°.
The long-time analytical solution (given in Details and shown in green on the plot for ) matches the numerical solution very well, after a short transient period. This derivation can be found in [1–2].
One can see that when everything is in phase then the flow behaves locally as a quasi-steady Poisueille flow, in which the green and blue curves coincide, the green curve being the parabolic solution and the blue curve taking inertial effects into account. At a high Strouhal number, inertial effects become significant and the velocity field is no longer locally parabolic (green and blue curves are distinct). Both limiting cases are shown in the last two snapshots.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The oscillating pressure-driven flow in a tube obeys the following equations:
-,
ρ,
, ,
, ,
, ,
,
, , , and ,
where , , and are the dimensionless velocity, radial position, and time.
The variable can be considered as a Reynolds number, since it appears as the ratio of inertial forces to viscous forces. There are two characteristic times for this problem: , the period of the imposed pressure gradient, and , the time for diffusion of momentum across the tube.
References
[1] L. G. Leal, Laminar Flow and Convective Transport Processes, Boston: Butterworth–Heinemann, 1992.
[2] L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge: Cambridge University Press, 2007.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+