10182

# Pythagorean-Hodograph (PH) Cubic Curves

A polynomial curve is a Pythagorean-Hodograph (PH) curve if is the square of another polynomial. The lowest-degree curves satisfying this condition are PH-cubics, here presented in Bézier form. The degrees of freedom of such a curve let you choose three of the four control polygon points. The remaining point is then determined.

### DETAILS

Consider a polynomial parametric curve . By definition, its hodograph is its derivative . It is said to be Pythagorean if there is another polynomial such that . The curve is then said to have a Pythagorean hodograph, or, for short, to be a PH curve. it has the remarkable properties of having polynomial speed and permitting offset curves with rational parametrizations.
The lowest-degree curve allowing this property is three. Therefore this Demonstration shows cubic curves written in Bézier form, that is, represented by their control polygons (see [1]).
Denoting by the distance between and and by the angle , a cubic curve is PH if and only if and . This result allows the free choice of three of the control points; the fourth one is then determined.
Reference
[1] R. T. Farouki, Pythagorean-Hodograph Curves: Algebra and Geometry inseparable, Berlin: Springer, 2008.

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.