Quantum-Mechanical Particle in an Equilateral Triangle

The particle in an equilateral triangle is the simplest quantum-mechanical problem that has a nonseparable but exact analytic solution. The Schrödinger equation can be written with on and outside an equilateral triangle of side . The ground-state solution corresponds to an energy eigenvalue . The general solutions have the form with and , with energies . The Hamiltonian transforms under the symmetry group so eigenfunctions belong to one of the irreducible representations , or . The states labeled by quantum numbers , including the ground state , are nondegenerate with symmetry . All other integer combinations give degenerate pairs of and states. Noninteger quantum numbers belong to twofold degenerate levels.
In this Demonstration, contour plots of the wavefunctions are displayed when you select the quantum numbers and . (If you change , you must also change Except for the ground state, only the contours , representing the nodes of the wavefunction, are drawn. The contour plots might take a few seconds to generate.
Vibration of an equilateral-triangular plate with fixed edges gives a classical analog of this problem with the same solutions.
  • Contributed by: Wai-Kee Li (Chinese University of Hong Kong) and S. M. Blinder


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Snapshot 1: contour plot of ground state
Snapshot 2: degenerate pair of , states
Snapshot 3: lowest-energy states
Reference: W.-K. Li and S. M. Blinder, "Solution of the Schrödinger Equation for a Particle in an Equilateral Triangle," Journal of Mathematical Physics, 26(11), 1985 pp. 2784–2786.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+