11481

Quantum Octahedral Fractal via Random Spin-State Jumps

Quantum jumps of spin 1/2 states on the Bloch sphere are realized by Möbius transformations. Chaos games produced by a random sequence of six noncommuting transformations centered at the vertices of the octahedron result in a fractal pattern on the sphere. The parameter , , defines the sharpness of the spin-direction measurements.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The algorithm for computing Platonic quantum fractals in general: define vertices of a regular polyhedron (there are five Platonic solids). Choose a fixed parameter , , which defines the "sharpness" of the fractal. Then select a random starting point on the unit sphere. Randomly select a vertex index ; let (one of the possible vertices). Apply the transformation
.
This is a Möbius transformation. It gives a new starting point on the sphere. Iterate the algorithm 10000 or more times.
Plot the first two coordinates of each point. The Möbius transformation theoretically maps the unit sphere onto itself. Yet after many iterations due to numerical inaccuracies, the norm can start to diverge. Therefore, it is better to normalize after each transformation.
For more details about Platonic quantum fractals, see [1] and [2].
References
[1] A. Jadczyk and R. Oberg, "Quantum Jumps, EEQT and the Five Platonic Fractals." arxiv.org/abs/quant-ph/0204056.
[2] A. Jadczyk, Quantum Fractals: From Heisenberg's Uncertainty to Barnsley's Fractality, New Jersey: World Scientific 2014.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+