9827

Quantum Teleportation

In quantum teleportation, a sender (Alice) can send the state of one quantum bit (qubit) to the receiver (Bob). The input to the circuit is the qubit whose state is to be transported, along with one of a pair of qubits entangled in the Bell basis state (the upper qubit). The other qubit from the Bell pair (the lower qubit) is sent unchanged to Bob. Alice process her two qubits with two quantum gates and measures the output (controlled by the user) yielding two classical bits, which are sent back to Bob. Bob then uses these bits to control the processing on his qubit from the entangled Bell pair through two quantum gates, and this yields a qubit with the same state Alice teleported.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

A quantum bit (qubit) cannot be cloned or copied, but its state can be teleported. In quantum teleportation, a sender (Alice) can send the state of one quantum bit (qubit) to the receiver (Bob). The input to the circuit is the qubit whose state is transported ( in the diagram), represented by two complex numbers specified by the user via the 2D slider), along with one of a pair of qubits entangled in the Bell basis state (the upper qubit). (See the Demonstration Measuring Entangled Qubits for more detail on the Bell basis state and quantum gates.) The other qubit from the pair (the lower qubit) is sent unchanged to Bob. Processing Alice's two qubits, first with a CNOT gate and then with a Hadamard gate, yields two qubits that are then measured. The act of measuring causes the quantum state to collapse, yielding two classical (0 or 1) bits. There are four randomly possible outcomes of this measurement of the two qubits (00, 01, 10, 11), which can be chosen by the user via the radio buttons, simulating the random outcome. An interesting thing about this circuit is that it does not matter what the specific measurement outcome is, because the teleported qubit output will turn out to be the same, independent of the measurement. The measurement output classical bits are sent to Bob, who uses these bits to control the processing on his entangled qubit pair with a Pauli X (or NOT) operation and a Pauli Z (or Phase Flip) operation, yielding the teleported qubit state . The matrices show the intermediate qubit states as the circuit processing progresses.
References:
P. Kaye, R. Laflamme, and M. Mosca, An Introduction to Quantum Computing, New York: Oxford University Press, 2007.
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wooters, "Teleporting an Unknown Quantum State via Dual Classical and Einstein–Podolsky–Rosen Channels," Physical Review Letters, 70, 1993 pp. 1895–1899.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+