9887

Quaternion Addition and Multiplication

The quaternions are a number system with a noncommutative multiplication denoted here by *. They can be represented in various ways: as pairs of complex numbers, as four-dimensional vectors with real components, or as the sum of a real scalar and a real three-dimensional vector, as is done in this Demonstration. The scalar part of the quaternion is shown on a line and the vector part is shown in 3D.
Vary the red and blue quaternions to see the effect on their sum (orange) or product (green). Click a button to set a quaternion to either 1, , , or ; you can also negate the red or blue quaternions.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Write a quaternion as a scalar plus a three-vector, .
Quaternion addition is component-wise: .
Quaternion multiplication is defined by , where . is the vector dot product and is the vector cross product.
Snapshot 1: , but

RELATED LINKS

    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+