10182

Bertrand's paradox asks for the length of a random chord in a unit circle. What are the odds that the length is greater than ? As shown in this Demonstration, the answer is , , or , depending on how random is defined.
In the first case, a value in (-1,1) is chosen, and a chord is drawn. Optionally, the chord can be rotated by a random angle. About half of the chords will have length greater than .
In the second case, a random point on the edge of the circle is chosen, and a chord is connected to the lowest point of the circle. Optionally, both points can be chosen randomly. About a third of the chords will have length greater than .
In the third case, a random point inside the circle is chosen, and this is used as the midpoint of a chord. About a quarter of the chords will have length greater than .

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.