11453

# Rational Roots of a Polynomial

Let be a polynomial with integer coefficients and constant coefficient . Use this Demonstration to find the rational roots of .
Each rational root is of the form , where and are integers such that divides and divides , the leading term. Make a list of all the possible rational roots by considering divisors of and .
At the start, the set of rational roots found is empty. Choose a candidate from the list. Using the Ruffini–Horner algorithm, divide by to get a polynomial and remainder (cyan box). If , then , and is a root of ; add to . Repeat this process with and the next candidate; continue until all the rational roots have been found. (The maximum number of roots is , so there may be no need to test all the candidates.)
When , the rational roots are integers.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.