# Real Roots of Sparse Polynomials

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

The number of real roots of a polynomial with terms is bounded by and does not depend on the degree of the polynomial. This chart shows the distribution of the number of real roots for 20 randomly generated polynomials of degree 100 with 10 terms each. If you keep the number of terms fixed and increase the degree to 10,000, the distribution of the number of real roots will be similar. With *Mathematica* 7 you can find real roots of polynomials with much higher degrees; however for polynomials of degree 1,000,000 generating the root distribution charts would take from a few seconds to about a minute per polynomial.

Contributed by: Adam Strzebonski (March 2011)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

Polynomials used to generate the charts contain terms with randomly generated integer coefficients between -1000 and 1000. The exponent of the leading term of each polynomial is randomly chosen to be either or ; the trailing term always has exponent zero and the exponents of the remaining terms are a randomly generated sample of positive integers less than the leading exponent.

## Permanent Citation

"Real Roots of Sparse Polynomials"

http://demonstrations.wolfram.com/RealRootsOfSparsePolynomials/

Wolfram Demonstrations Project

Published: March 7 2011