Relativistic Aberration and Doppler Shift

Suppose a specific number of evenly distributed light rays is incident on an observer at rest. For a moving observer at the given location, with scaled velocity , these light rays appear to be tilted in the direction of motion (aberration), as indicated by the yellow triangle. As a result of the Doppler effect, light that comes from the direction of motion is blue-shifted, while light from the opposite direction is red-shifted.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


A detailed discussion of relativistic aberration can be found in the standard literature of special relativity. Here, we use the aberration formula to transform between the stationary reference frame (unprimed coordinates) and the moving reference frame (primed coordinates). The Doppler factor is defined as , where is the wavelength of the emitted light from a source at rest with respect to , and is the wavelength measured by the moving observer. From the point of view of the moving observer, there will be no Doppler shift, , for .
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+