9464

Residence Time Distribution for Continuous Stirred-Tank Reactors in Series Using the First Four Moments

Consider CSTRs (continuous strirred-tank reactors) subject to a tracer impulse experiment. The residence time distribution (RTD) can be found exactly by solving a system of ODEs obtained from mass balances in all reactors or by Laplace inversion of the system's transfer function. It turns out that the first four moments can be easily obtained from the transfer function expression and by means of a Gram–Charlier series for the approximatie RTD. This Demonstration presents a comparison of these three methods for user-set values of , the number of CSTRs in series. It is clear that, as increases, the exact result and the approximate result (derived from the moment expressions in Gram–Charlier theory) show close agreement.
The transfer function of the system is given by , where is the residence time, taken to be five hours for all tanks.
The system of ODEs is,
for the first CSTR, ;
for subsequent CSTRs, , for .
The expression for the tracer's concentration based on the four moments is
,
where , , , , and .
The first, second, third, and fourth moments are measures of the mean, variance, skewness, and kurtosis, respectively.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

S. M. Walas, Chemical Reaction Engineering Handbook of Solved Problems, New York: Gordon and Breach Publishers, 1995 p. 531.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+