10176

# Resonance Lineshapes of a Driven Damped Harmonic Oscillator

The plots show (solid lines) the frequency dependence of the amplitude, the phase, the in-phase component, and the quadrature component of a driven damped harmonic oscillator. The variable parameter is the quality factor Q of the oscillator, that is, the ratio of the oscillator's resonance frequency to its damping constant γ. The (normalized) lineshapes are presented in dimensionless frequency units, giving the representations a universal character that can be applied to any driven oscillator (mechanics, electronics, optics, etc.). The plots also show (dashed lines) the Lorentzian lineshapes obtained in the high-Q limit when .

### DETAILS

This Demonstration analyzes in which way the (high- limit) Lorentzian lineshapes of a driven damped harmonic oscillator differ from the exact resonance lineshapes.
The equation of motion of a damped harmonic oscillator (with mass , eigenfrequency , and damping constant ) driven by a periodic force is
.
The general solution can be written as
,
where
and .
The solution can thus be parametrized either by the amplitude and phase (||, ) or by the in-phase and quadrature components (. The explicit frequency dependence of those parameters is obtained by inserting the general solution into the equation of motion, yielding
;
; .
The expressions can be rewritten using the dimensionless frequency parameter ξ and the quality factor , defined by , and , to yield
||= ; ;
;.
The four resonance lineshapes are shown in the plots as black solid lines. In order to avoid rescaling during the manipulation of the quality factor , all signals are normalized to their largest value.
The high- limit:
for , that is, for , the expressions can be simplified, yielding
; ;
; ,
or, in dimensionless units,
; ;
; .
The corresponding lineshapes are shown as dashed blue lines.
An alternative parametrization consists in introducing the dimensionless detuning , for which the resonances are given by
; ;
; ,
which shows that the phase and quadrature signals in the high- limit are dispersive and absorptive Lorentzians, respectively.

### PERMANENT CITATION

Contributed by: Antoine Weis (University of Fribourg)
 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.