10217

# Riemann Hypothesis

The Riemann hypothesis is one of today's most important problems in mathematics. The hypothesis states that all of the nontrivial zeros of the Riemann zeta function are located on the critical line . A \$1,000,000 prize has been offered by the Clay Mathematics Institute for the first correct proof of the hypothesis.
The hypothesis was first formulated by Riemann in 1859 and has remained unsolved since then. It is known that the nontrivial zeros are located in the crtical strip , moreover if we define , then , which shows that the zeros must be symmetric with respect to the critical line.
This Demonstration plots the absolute value of the zeta function with respect to the imaginary part of its argument. You can change the range of the plot and the real part of . The dashed red lines show the position of the imaginary part of the zeros.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.