9458

Salzer's Method for Numerical Evaluation of Inverse Laplace Transform Involving a Bessel Function

This Demonstration shows the numerical inversion of Laplace transforms using Herbert E. Salzer's method [1]. The test function is , where the user sets the parameter . The exact inverse Laplace transform is given by , where is the Bessel function of the first kind of order zero. The error (i.e. the difference between the exact inverse and the numerical inverse) is also given. The numerical method fails at large (see the first snapshot) and can only serve as a quick-and-dirty technique for the inversion of Laplace transforms.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Herbert E. Salzer's method allows the determination of for a given as follows:
, where are the roots of , are the Christoffel numbers, and are the generalized hypergeometric functions.
Reference
[1] H. E. Salzer, "Orthogonal Polynomials Arising in the Numerical Evaluation of Inverse Laplace Transforms," Mathematics of Computation, 9(52), 1955 pp. 164–177. doi: 10.1090/S0025-5718-1955-0078498-1.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+