9860

Scalenohedron

A di--gonal scalenohedron is bounded by mutually congruent scalene triangles. As a convex polyhedron with and , it occurs as a crystal form of certain minerals.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Consider a regular polygon with sides in a horizontal plane. Raise and lower its alternate vertices to get a regular skew polygon. Take its (vertical) axis of rotation, and, for some , choose a pair of points on this axis at heights and . Take each of those points as an apex connected to the vertices of the regular skew polygon by edges. These edges, together with the sides of the skew polygon, form the triangular faces of a general di--gonal scalenohedron. A general di--gonal scalenohedron is not necessarily a convex polyhedron. By moving the contols, you can see that in special cases bipyramids, streptohedra, rhombohedra, tetrahedra, and even the cube appear. In nature, the ditrigonal scalenohedron occurs as a well-known crystal form of calcspar (calcite). For , the name tetragonal scalenohedron is preferred for "di-digonal scalenohedron" (a crystal form of chalcopyrite, the most frequent ore of copper).
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+