Schrödinger Equation for a One-Dimensional Delta Function Potential

After the free particle, the most elementary example of a one-dimensional time-independent Schrödinger equation is conceptually that of a particle in a delta function potential: (in units with ). For an attractive potential, with , there is exactly one bound state, with and . Note that and . Since the delta function has dimensions of , this solution is considered the one-dimensional analog of a hydrogen-like atom. The bound state, in fact, resembles a cross section of a 1 orbital .
For , free particles are scattered by a delta function potential. The positive-energy solutions can be written , with . The amplitudes of the transmitted and reflected waves are accordingly given by and , respectively. Note that these are the same for attractive and repulsive delta funtion potentials, independent of the sign of .
For continuum states, the graphic shows a wave incident from the left. The transmitted wave is shown on the right in blue and the reflected wave, on the left in red, with opacities indicating relative wave amplitudes.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Snapshot 1: wavefunction for the single bound state
Snapshot 2: unperturbed continuum state, with
Snapshot 3: scattering state, showing incident, transmitted and reflected waves
Reference: S. M. Blinder, "Green's Function and Propagator for the One-Dimensional Delta Function Potential," Phys. Rev. A, 37(3), 1988 pp. 973–976.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+