9853

Second Virial Coefficients for the Lennard-Jones (2n-n) Potential

The Lennard–Jones interaction potential is defined as , where is the minimum, is the distance at which the potential changes sign, and is an exponent that defines the shape of the potential. The conventional Lennard–Jones potential uses . In this Demonstration, you can control the exponent to plot the second virial coefficient , relative to the hard-sphere value , as a function of the reduced temperature . The value of the Boyle temperature (at which ) is also calculated. You can control the temperature range of the plot in units of the Boyle temperature.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The classical second virial coefficient of a gas of particles interacting via a potential is . In the particular case of the Lennard–Jones potential , it is possible to prove that . Here, , where is the second virial coefficient of a gas of hard spheres of diameter , is the reduced temperature, and is a parabolic cylinder function.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+