Second Virial Coefficients Using the Lennard-Jones Potential

The Lennard–Jones (L–J) 6-12 potential, , has been extensively employed for the computation of virial coefficients and transport properties of fluids. Here and are empirical parameters for each substance. The depth of the potential well is equal to , while the collision diameter is approximated by . The equilibrium intermolecular separation is then given by . In the first part of this Demonstration, L–J potentials are plotted for a number of common gases.
The equations of state for real gases can be represented by a virial expansion: , where is known as the second virial coefficient, , the third virial coefficient, and so on. For an ideal gas, of course, . The virial coefficients can be determined using classical statistical mechanics. In this Demonstration, we compute the second virial coefficient for an L–J gas using the relation . The light gases He and have significant quantum contributions and are not considered here. The temperature dependence of the second virial coefficient is shown in the second series of plots.
Several gases can be displayed at the same time by using the checkboxes on the left. Each curve can be identified using the tooltip.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The integral for cannot be evaluated analytically, but an accurate approximation can be based on the expansion . It suffices to take just the first few terms of the series.
[1] S. M. Blinder, Advanced Physical Chemistry, London: Macmillan, 1969, pp. 491–496.
[2] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, New York: Wiley, 1954.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+