9464

Sendov's Conjecture

Made by Blagovest Sendov circa 1958, this conjecture has eluded proof despite a heated interest among many mathematicians. It states simply that for a polynomial with and each root located inside the closed unit disk in the complex plane, it must be the case that every closed disk of radius 1 centered at a root will contain a critical point of . Since the Lucas–Gauss theorem implies that the critical points of must themselves lie in the unit disk, it seems completely implausible that the conjecture could be false. Yet, at present, it has not been proven for polynomials with real coefficients or for any polynomial whose degree exceeds 8.
Set the degree of the polynomial (i.e., the number of roots) using the popup menu. Initially, the polynomial is used, so that the roots are the roots of unity. The roots of are blue locators; simply drag a root to change its value. The critical points of (the roots of the derivative) are shown in orange. Sendov's conjecture will be disproved if you can manipulate things in such a way that there is a disk that does not contain an orange point.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Further reading:
Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford: Oxford University Press, 2002.
G. Schmeisser, "The Conjectures of Sendov and Smale," Approximation Theory: A Volume Dedicated to Blagovest Sendov (B. Bojoanov, ed.), Sofia: DARBA, 2002 pp. 353-369.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+