Series Reactions in a Batch Reactor

Two first-order, liquid-phase reactions take place in an isothermal batch reactor; the reactor initially contains only at a concentration of . The activation energy of the second reaction (155 kJ/mol) is higher than the activation energy of the first reaction (145 kJ/mol). Vary the temperature of the reaction with a slider. Use buttons , , ) to display the concentration of , , or as a function of time. Select ", , and " to display all three concentrations versus time. Select "selectivity )" to plot versus time. The selectivity changes with temperature because the reactions have different activation energies. The time scale in the plots changes between 465 K and 466 K.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Consider the first-order reactions . The reactor is isothermal, and the temperature of the reactor is set with a slider. As the temperature changes, the selectivity for the desired product changes.
Mole balances are done:
,
,
,
,
,
where , , and are the concentrations of , , and (), is time (h), and are the rate constants for the first and second reactions (1/h), and are pre-exponential factors (1/h), and are activation energies (kJ/mol) where , is the ideal gas constant (kJ/[mol K]), and is temperature (K) of the reaction.
The screencast video at [2] shows how to use this Demonstration.
References
[1] H. Scott Fogler, Essentials of Chemical Reaction Engineering, Boston: Pearson Education, 2011 pp. 298–302.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.