10182

# Set Partitions Match Restricted Growth Functions

Set partitions of can be matched to restricted growth functions . Each entry of such a function (or -vector) is at most one more than the maximum of the preceding entries.
The following explains the matching.
Suppose the partition is . We write this more compactly as .
Suppose the blocks are in order of their least element. In this example those elements are and the blocks are in order.
To construct the restricted growth function, put below the indices given by block : . Put below the indices given by block : . Finally put below the indices given by block : . Then the restricted growth function is .
To go the other way, reverse the process. For example, if the growth function is , then block is because those are the indices for . Block is and block is . The blocks are ordered by least element: .

### DETAILS

D. Stanton and D. White, Constructive Combinatorics, New York: Springer–Verlag, 1986.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.