9716

Singular Values in 2D

Some square matrices are diagonalizable or even orthogonally diagonalizable. An important fact about diagonalization is that the resulting diagonal matrix contains the eigenvalues of the original matrix on the main diagonal. However, not all matrices are diagonalizable. In such a case, the singular value decomposition (SVD) still exists. If is an matrix, its singular values are the square roots of the eigenvalues of the matrix .
The term singular value relates to the distance of the given matrix to a singular matrix. The idea behind SVD is that every matrix can be decomposed into a product , where and are orthogonal matrices and and .
This Demonstration shows the singular values of certain linear transformations in , including rotation, dilation, and the sheer transformation of factor . The yellow square (with blue arrows) is the original region and the black region (with red arrows) is the transformed region. The singular values of the standard matrix affiliated with the transformation can be found when the transformed grid is orthogonal.
Choose a transformation and rotation of the grid until it appears to be orthogonal; the length of the red arrows approaches the singular values of the standard matrix.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+