9887

Small Intervals where the Partial Sums of a Series Fail to Alternate

Consider the variant of the series , where is a non-negative parameter. For , the partial sums of alternate as gets large. However, for values of in a certain range, there will be a small interval where the sequence of partial sums fails to alternate. That is, there is an such that or the reverse, . It might be an interesting exercise to understand this visually paradoxical phenomenon (see Details for an outline).
  • Contributed by: Marvin Ray Burns
  • With additional contributions by the Wolfram Demonstrations team.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

For , there are no skips in the alternations of the partial sums. In order to have such a skip, there must be a sign change between and . This is equivalent to having exactly one root of in . It can be shown that this happens for . For we still have two real roots to this equation, but both are in the interval . Hence there is no sign change (because there were two skips within the same unit interval). For , there are no longer real solutions to the equation . Also notice that for , we have a root for and another with . Hence we have consecutive sign changes. For in this range, we have an initial sequence of three partial sums decreasing after the first term.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+