Sports Seasons Based on Score Distributions

How does your sports team's success over a season vary according to the statistical distribution of its scores and those of its opponents? This Demonstration from the field of sabremetrics lets you select two parameters for your team and for its adversary that describe the statistical distribution of scores. It then determines for a user-selected number of sample seasons the number of wins and (where permitted) the number of ties of your team over all of those seasons. It produces histograms showing the distribution of scores for your team and its opponent. It also produces histograms of the number of wins and ties over each of the sample seasons. You can select the type of two-parameter distribution from which scores will be drawn, the number of games in a season, and whether games are permitted to end in a tie. It is worth noting that the distribution of wins is likely to have a standard deviation that will prove significant in a competitive league, that is, there may be a fair amount of "luck" in determining your team's standings.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The Demonstration is faster if the number of seasons sampled is not set to 100.
There is good evidence that the number of runs scored by an American major league baseball team is Weibull-distributed.
Baseball's "Pythagorean theorem" suggests that the percentage of wins over a season should be , where is the number of runs you score and is the number of runs your opponent scores. The exponent γ is generally estimated to be about 1.79. This Demonstration suggests that the standard deviation of the distribution of runs may matter, too.
A leading academic work on this topic is "A Derivation of the Pythagorean Won-Loss Formula in Baseball" by Steven J. Miller.
Snapshot 1: what might happen if a baseball games were doubleheaders in which each game lasted a fewer number of innings
Snapshot 2: simulating an English Premier League 38-game season; "your" team based loosely on Manchester United for 2008
Snapshot 3: in a short "season" such as a baseball World Series, the better team (measured by average score) does not always win
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+