11453

Statistical Behavior of a Set of Uniformly Rotating Independent Particles with Random Frequencies

A set of independent particles in uniform rotation, but with incommensurable frequencies, has behavior similar to that of a one-dimensional perfect gas, with constant internal energy. In fact, assuming that initially the particles are at the same point on the circle, they will quickly move to positions that are distributed with a uniform density. To verify this, we choose particles and randomly assign them frequencies within a certain range. Then we compute how many particles are located within a predetermined arc of our choice at each time step. Experimentally, we verify that the distribution of the points in the arc is very well approximated by the binomial distribution , which is characterized by the total number of particles and the parameter . The probability that all particles return to a configuration arbitrarily close to the initial one is equal to , which is negligible, if it is even possible (a Poincare's recurrence). For example, for frequencies between about and Hz, 15 particles may return to an arc of angle around the initial position in a time of the order of the age of the universe, years. In this Demonstration, you can observe density fluctuations in both space and time.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

A basic introduction to statistical physics can be found in [1] and [2].
References
[1] L. Landau and E. M. Lifshitz, Statistical Physics, London: Pergamon, 1958.
[2] K. Huang, Introduction to Statistical Physics, London: Taylor & Francis, 2001.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+