10176

# Step and Impulse Response of a Second-Order System

Consider a second-order process, where the transfer function is given by , where is the process time constant and is the damping coefficient.
This Demonstration shows the response of this process when subject to a step input of amplitude (i.e., , where is the unit step function) or an impulse input of amplitude (i.e., , where is the Dirac delta function). The response is obtained by Laplace inversion using the Mathematica built-in function, InverseLaplaceTransform.
When , one gets an underdamped response with oscillatory behavior. Critically damped and overdamped systems result when and , respectively. For these last two cases, the response does not exhibit oscillations. A critically damped response returns to steady state faster than an overdamped response when the system is subject to an impulse input.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.
 © 2015 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS
 Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX Download or upgrade to Mathematica Player 7EX I already have Mathematica Player or Mathematica 7+