Stirling Numbers of the First Kind

The Stirling numbers of the first kind, or Stirling cycle numbers, denoted or , count the number of ways to permute a set of elements into cycles. This Demonstration illustrates the different permutations that a Stirling cycle number counts.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Snapshot 1: There is only one way to permute a list containing elements into (singleton) cycles, and therefore .
Snapshot 2: Rotating the elements in a cycle so that the last becomes the first results in the same cycle: is the same cycle as . Because of this, it is often desirable to choose a standard representation of any cycle, such as rotating it so that its greatest element is listed first. After fixing the position of the greatest element in a list of items, there are ways to permute the remaining elements to create different cycles, which means that .
Snapshot 3: The Stirling numbers of the first kind can be computed recursively; by comparing snapshot 2 and snapshot 3, it is clear that is related to .
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+