9772

Superdense Coding

In superdense coding, a sender (Alice) can send a message consisting of two classical bits using one quantum bit (qubit) to the receiver (Bob). The input to the circuit is one of a pair of qubits entangled in the Bell basis state (the upper qubit). The other qubit from the pair (the lower qubit) is sent unchanged to Bob. After processing the upper qubit in one of four ways, it is sent to Bob, who measures the two qubits, yielding two classical bits. The result is that Bob receives two classical bits, and , that match those that Alice sent, but only a single (upper) qubit conveyed those two bits of information.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

If the classical bit is set to a 1, then a Pauli X (or NOT) operation is performed on the upper input qubits. If the classical bit is set to a 1, then a Pauli Z (or Phase Flip) operation is additionally performed on that input qubit. At this point, the processed upper input qubit is sent to Bob, who then measures the processed and unprocessed qubits in the Bell basis state by using a CNOT gate followed by a Hadamard (see the Demonstration Measuring Entangled Qubits for more details), yielding two classical bits. The result is that Bob receives two classical bits, and , that match those that Alice sent, and only a single (upper) qubit conveyed those two bits of information.
References:
P. Kaye, R. Laflamme, and M. Mosca, An Introduction to Quantum Computing, New York: Oxford University Press, 2007.
C. Bennett and S. Wiesner, "Communication via One- and Two-Particle Operators on Einstein–Podolsky–Rosen States," Physical Review Letters, 69(20), 1992 pp. 2881–2884.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+