10176

# Supersymmetry for the Square-Well Potential

The most elementary problem in quantum mechanics considers a particle of mass in a one-dimensional infinite square well of width ("particle in a box"). The Schrödinger equation can conveniently be written in the modified form in , such that the ground state energy is rescaled to . The eigenstates are then given by -1], . The quantum number is now equal to the number of nodes in the wavefunction. For simplicity, let and . The Schrödinger equation then simplifies to with , , , .
The first step is to define the superpotential and two ladder operators and . The original Hamiltonian is then given by . The operator obtained by reversing and , , is called the supersymmetric-partner Hamiltonian. More explicitly, and , where and . It can then be shown that if is an eigenfunction of with eigenvalue then is an eigenfunction of with the same eigenvalue: . We denote the eigenfunction of by call its eigenvalue . For unbroken supersymmetry, . Note that , meaning that the ground state of has no superpartner. Correspondingly, we find . (The constants provide normalization factors.) Note that the operator removes one of the nodes of the wavefunction as it converts it into . Conversely, adds a node.
In this Demonstration, you can plot any of the lowest four square-well eigenfunctions , on a scale with each origin at the corresponding eigenvalue . On the right are the corresponding eigenfunctions of the supersymmetric partner Hamiltonian , moving in the potential well (compared to ). The first three normalized supersymmetric eigenstates are given by , ; , ; , .
In particle physics, supersymmetry has been proposed as a connection between bosons and fermions. Although this is a beautiful theory, there is, as yet, no experimental evidence that Nature contains supersymmetry. If it does exist, it must be a massively broken symmetry. It is possible that the Large Hadron Collider will find supersymmetric partners of some known particles.

### DETAILS

Reference: A. Khare, "Supersymmetry in Quantum Mechanics," arXiv, 2004.

### PERMANENT CITATION

Contributed by: S. M. Blinder
With suggestions by Jeremy Michelson
 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.