9860

Survival Curves of Bacilli Spores with an Activation Shoulder

This Demonstration simulates and plots realistic survival curves of heat-treated Bacilli spores, at least some of which can be dormant and activated by high temperature. It is based on a purely phenomenological empirical model that accounts for activation and inactivation separately. The activation accounts for the finite number of dormant spores while inactivation accounts for either log-linear or non-log-linear survival kinetics.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Snapshot 1: intensive activation followed by accelerated inactivation
Snapshot 2: moderate activation followed by moderate accelerated inactivation
Snapshot 3: little activation followed by moderate log-linear inactivation
Survival curves having an "activation shoulder" have been described by different mathematical models. This Demonstration generates and plots isothermal survival curves of Bacilli spores having an activation shoulder with a four-parameter empirical model. Its equation is: where is the base-10 logarithm of the momentary survival ratio at time , is the hypothetical initial number of dormant spores, is a time constant of the dormant spores' activation, is a characteristic time of the inactivation, and is a parameter that controls the survival curve's post-peak curvature. The activation and inactivation parameters, , , , and , and the plot's time axis maximum and log survival axis minimum are all entered with sliders. The plot shows the survival curve in red, the asymptotic level of the first term in the equation, , in orange, and the hypothetical activation curve (had there been no inactivation) as a dashed gray line. Note that the activation and inactivation rates are characteristic of the bacterial species and vary with temperature. Also note that when the post-peak inactivation is log linear.
References:
M. Peleg, Advanced Quantitative Microbiology for Foods and Biosystems, Boca Raton: CRC Press, 2006.
M. A. J. S. van Boekel, Kinetic Modeling of Reactions in Foods, Boca Raton: CRC Press, 2009.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+