10178

# The Banach-Tarski Paradox

This Demonstration shows a constructive version of the Banach–Tarski paradox, discovered by Jan Mycielski and Stan Wagon. The three colors define congruent sets in the hyperbolic plane , and from the initial viewpoint the sets appear congruent to our Euclidean eyes. Thus the orange set is one third of . But as we fly over the plane to a new viewpoint, we come to a place where the congruence of orange to the green and blue combined becomes evident. Thus the orange is now half of .

### DETAILS

(*) , , .
Snapshot 1: the orange set is a third of the hyperbolic plane
Snapshot 2: the viewpoint has switched and the green region has become blue; the orange set is now congruent to the green and blue combined, and so is one half of the hyperbolic plane
Snapshot 3: the orange set in the alternative paradox is a little simpler, and is still simulataneously a third and a half of the hyperbolic plane
More details can be found in [1].
Reference
[1] S. Wagon, The Banach-Tarski Paradox, New York: Cambridge University Press, 1985.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.