The Buffon Noodle Problem

The Buffon noodle problem is an extension of the Buffon needle problem: curves of unit length are dropped randomly onto a plane marked with lines one unit apart. If crossing multiplicities are taken into account (i.e., a noodle crossing a line times contributes to the total crossing count), then the expected number of crossings is , where is the number of noodles thrown. This is the same result as the classic needle problem, where the probability of a crossing is .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Each noodle is created by using a Bézier curve constructed from random points and then truncating the curve so that its arc length is exactly 1. The proof of the result on the expected number of crossings is not difficult and can be found in the following paper.
J. F. Ramaley, "Buffon's Noodle Problem," American Mathematical Monthly, 76(8), 1969 pp. 916–918.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+