The Effect of the Spherical Harmonic Gravitational Potential on Satellite Orbits

The Earth is not a perfect sphere, as its rotation causes it to be slightly flattened at the poles. This oblateness can be modeled as a extra band of material encircling the equator. The extra material exerts torque on an orbiting satellite, causing the orbital planes to slowly precess in space rather than being fixed in an inertial frame. The oblateness torque will also cause the line of the apsides to rotate slowly in the orbital plane itself. This Demonstration shows the effect of the Earth's asphericity on the mean orbit elements.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The gravity potential due to the oblate Earth can be expressed as
where denotes the radial distance from the Earth's center, is the standard gravitational parameter, is the equatorial radius, are the zonal gravitational harmonic coefficients, and are the Legendre polynomials. The harmonic, known as the oblateness perturbation, is the dominant harmonic and causes significant precession of the near-Earth satellite orbits. The perturbation affects the orbital elements right ascension of the ascending node , inclination , argument of the periapsis , semi-major axis , eccentricity , and initial mean anomaly in the following three ways: (1) short-period oscillations; (2) long-period oscillations; and (3) secular drift. For long-term investigation, the secular drift is of special importance and this is what this Demonstration studies. The effect of on the mean orbit elements can be expressed by the following differential equations:
These equations imply that for a critical orbit inclination of 63.4249 degrees, no drift in the mean argument of perigee occurs.
In this Demonstration, an orbit with the following initial conditions is considered:
, , , , , and .
The differential equations were solved for 500 orbital periods (one orbital period for this orbit is 2.76445 hours). An orbit is synthesized from the orbital elements (which are continuous time functions) at the end of each orbital period and rendered on the screen. It can be seen that for the inclined orbit, both the line of nodes and the periapsis regress, whereas for the orbit with the critical inclination, only the nodal line shows secular drift.
Reference: H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems, Reston, VA: American Institute of Aeronautics and Astronautics, 2003.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+