The Györgyi-Field Model for the Belousov-Zhabotinsky Reaction

The Belousov–Zhabotinsky (BZ) reaction in a continuous-flow stirred-tank reactor (CSTR) can exhibit chaos, contrary to the Oregonator model, which has no chaotic solutions.
Deterministic chaos in the BZ reactor was studied in [1]. The scaled differential equations are:
where , , , and and the significance of all parameters ( for , , , , , , , , , and ) is given in [1].
Here, the bifurcation parameter is , the inverse of the reactor's residence time.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The snapshots show several situations.
Snapshot 1: periodic behavior for
Snapshot 2: period-2 for
Snapshot 3: period-3 for
Snapshot 4: period-5 for
Snapshot 5: chaos for
Snapshots 6 and 7: finally back to period-2 and periodic behavior for and , respectively.
This bifurcation diagram (a remerging Feigenbaum tree) given below was obtained by the authors using a separate program that draws on the present Demonstration. A close look at this bifurcation diagram confirms the findings seen in the various snapshots given above.
[1] L. Györgyi and R. J. Field, "A Three-Variable Model of Deterministic Chaos in the Belousov-Zhabotinsky Reaction," Nature, 355, 1992 pp. 808–810. doi:10.1038/355808a0.
[2] A. Barnett, "Math 53: Chaos! - Fall 2011." (Jan 14, 2013) www.math.dartmouth.edu/~m53f11.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+